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Determinations have been made of the two independent components of the Hall vector for Zn at 78 and 
297 °K, and for Cd at 297 °K using a high-sensitivity dc technique on rectangular single-crystal sheet speci
mens. The effect of possible errors in the measured angles between the experimental and the crystallographic 
coordinate systems has been calculated, and it is suggested that this is the major source of spread in the re
sults. Small variations in the purity of the Zn had no effect on the Hall coefficient. Heat treatment of the 
specimen assembly produced an alteration in the Hall coefficient which eventually approached a steady 
value, but the sign and magnitude of the alteration was different for each crystal. Pole figures for a number of 
polycrystalline samples have been determined, and a process of numerical integration has been used to pre
dict the Hall coefficient from the single-crystal data. In the case of zinc the agreement with experiment is 
good, but for cadmium the predicted Hall coefficient is significantly greater than the experimental value. It is 
suggested that this is due to short-circuiting of the Hall field by adjacent grains. The Hall coefficients of rolled 
polycrystalline Zn and Cd have been determined and show a systematic variation with the angle at which the 
specimen is cut from the sheet. An explanation of this variation is given on the basis of the asymmetry of the 
pole figure. 

INTRODUCTION 

IN discussing galvanomagnetic effects in anisotropic 
materials, it is necessary to adopt a definition of the 

Hall effect which clearly distinguishes it from the change 
in resistance due to a magnetic field. For isotropic 
materials at room temperature we may write 

B=/J+£BxJ, (1) 

where E is the electric field, J is the current density, B 
is the magnetic induction, p is the resistivity, and R is 
the Hall coefficient. The second term in (1) is the Hall 
field, and it is normal to both the current density and 
the magnetic field. In anisotropic media Eq. (1) does 
not hold, but to facilitate comparisons between various 
materials it is desirable to retain in a more genera-
expression the characteristic properties of RJ x B. Fol
lowing Logan and Marcus1 we choose to adopt the conl 
vention that the Ohmic field is 

i[E(B)+E(-B)] 

and the Hall field is 

|[E(B)-E(-B)]. 

(2) 

(3) 

As a result of this definition, the Hall field reverses 
its direction on reversing the direction of the applied 
magnetic field, while the Ohmic field does not. Neither 
term changes its magnitude on this reversal. Further, 
the Hall field vanishes when 6 = 0. 

This choice is based on a calculation of Casimir,2 who 
showed that, for an anisotropic material, if the vectors 
are resolved into components in any convenient rec
tangular coordinate system 

Ei=T,j.Pi3Jj+(r*J)i, (4) 

* Present address: Metals Science Group, Battelle Memorial 
Institute, Columbus, Ohio. 

1 J. K. Logan and J. A. Marcus, Phys. Rev. 88, 1234 (1952). 
2 H. B. G. Casimir, Rev. Mod. Phys. 17, 343 (1945). 

where the pij are functions of B such that 

Ptf(B)=-p#(—B), 
while 

r(B)=-r(-B). 
The vector r is called the Hall vector. In deriving (4), 
Casimir neglected the interaction of thermal and gal
vanomagnetic effects. Kohler3 analyzed the limitations 
imposed by crystal symmetry on the Hall vector. 
Writing 

ri-T.jRyB,; (5) 

we choose the coordinate system so that one axis is 
parallel to the hexad axis of symmetry in the hexagonal 
close-packed system, and the other two are parallel to 
mutually perpendicular directions in the basal plane. In 
this case, the matrix R is diagonal, and symmetry con
siderations together with the Onsager relationships 
indicate that only two of the diagonal terms are inde
pendent. We label these Ri and R2 and adopt the con
vention that Ri is the Hall coefficient when the magnetic 
induction is parallel to the hexad axis. 

Roesch and Willens4 have recently noted that the 
large variation in the published values of the Hall 
coefficient for polycrystalline samples of a titanium 
can be interpreted in terms of the variation in the tex
ture of the specimens and the consequently varying con
tributions of Ri and R2. The analysis is incomplete 
however, because of the lack of single-crystal data. In 
this investigation the Hall constants for polycrystalline 
samples of zinc and cadmium have been measured, and 
compared with the results predicted from the observed 
texture and the values of i?i and R2 measured for single 
crystals. Determinations of Ri and R2 have been made 
for both zinc and cadmium at liquid nitrogen and room 
temperatures by Noskov.5 Rx and R2 for zinc at liquid-

3 M. Kohler, Ann. Physik 20, 878 (1934). 
4 L. Roesch and R. H. Willens, J. Appl. Phys. 34, 2159 (1963). 
5 M. M. Noskov, Zh. Eksperim. i Teor. Fiz. 8, 717 (1938). 
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nitrogen temperature have also been determined by-
Logan and Marcus. The results show scatter (Table I) 
and the values of the coefficients, especially for cadmium, 
where measurements have been confined to three crys
tals only, cannot be taken as being firmly established. 

EXPERIMENTAL MATERIALS AND TECHNIQUE 

The single crystals were grown in reactor-grade 
graphite split molds by a modified Bridgman technique 
from metal of nominal 99.999% purity supplied by 
Messrs. Light Ltd. The polycrystalline samples were 
prepared in the main from the same material, but to 
evaluate the effect of purity some specimens prepared 
from material of nominal 99.99% purity were studied. 

The single crystals as grown measured approximately 
10X1X0.05 cm. Specimens were cut from these crystals 
using an acid saw with a chromic acid solution. The 
crystals were extremely soft; some of the cadmium 
specimens would bend under their own weight if held 
at one end. This made it very difficult to avoid twinning 
the crystals at some stage during the preparation of the 
specimens and mounting them in the measuring ap
paratus. Fortunately, the twins could easily be seen 
with the naked eye on the bright etched metal surface, 
and the back reflection Laue technique used to deter
mine the specimen orientation was an additional check. 
All twinned specimens were rejected. Figure 1 shows the 
orientations of the specimens studied. 

The polycrystalline specimens were rolled to 0.020-in. 
sheet at room temperature on a two-high 6 in. mill. Since 
both zinc and cadmium of this purity recrystallize at 
room temperature, this is, in fact, hot rolling; but the 
recrystallization texture for these metals is the same as 
the cold-rolled texture. In order to produce materials 
with different texture, some sheets were cross rolled, 
the sheet being rotated through 90° between each pass. 

The specimen holder for the Hall effect measurements 
was constructed from J-in. diam Perspex rod for maxi
mum rigidity. The current leads were soldered to copper 
screw clamps, which were clamped to the ends of the 
specimen. In some cases indium wire was used to improve 
the contact and reduce contact noise in the specimen 
current. The upper clamp was set in the Perspex holder 
and the lower was free to move along a vertical guide 
rod, to eliminate as far as possible strains being intro
duced into the specimen by differential expansion during 
heating and cooling. 

The Hall field in the specimen was measured using a 
two-probe method, rather than the three-probe method 
used by Logan1 and by Roesch,4 partly to avoid loops 
in the magnetic field and partly to avoid introducing 
angular errors. The two-probe method requires ac
curate alignment of the Hall probes, and has the dis
advantage that the observed signal includes a resistive 
drop due to inevitable misalignment of the probes as 
well as the Hall signal. The signal is thus very sensitive 
to variations in the specimen current. Various methods 

TABLE I. Hall coefficients RH (10~12 Q cm G-"1), single crystals. 

Material 

Zn 1 Noskov 
2 
3 
4 
5 
6 

Zn 1 Logan 
2 
3 

Cd 1 Noskov 
2 
3 

R 
288°K 

1.44 
1.41 
1.43 
1.43 
1.44 
1.4 

1.20 
1.45 
1.32 

i 

77°K 

1.87 
1.94 

2.01 
1.86 

2.5 
1.8 
0.1 

1.66 

1.74 

R* 
288°K 

0.04 

0 
-0 .06 
-0.025 

0.11 

0 

77°K 

0.16 

0.18 
0.19 

0.21 

0.38 

0.27 

of current stabilization were used, and various methods 
of backing out the resistive drop, with only moderate 
success. Finally, a Tinsley constant current unit type-
5390 was used. This supplied currents of 0.5, 1.0, 1.5, 
and 2.0 A accurate to 1 part in 106. The current was 
monitored with a standard resistor and a Cambridge 
potentiometer, but, in fact, this proved unnecessary. 

The Hall probes were 0.005-in.-diam copper wire, and 
were spot welded to the specimen by touching the wire 
to the specimen and discharging a condenser through the 
junction. The weld was then consolidated with several 
further discharges. This method produced robust junc
tions of very small extent, and made it relatively simple 
to achieve good probe alignment. After welding, the 
Hall leads were cemented to the specimen holder and 
twisted together to avoid induction effects. 

A Newport type-D 8-in. electromagnet with water-
cooled coils with a 4-cm gap was used. The current 
supply was a 20-kW motor generator with an output 
smoothed to 1 part in 105. The maximum field obtained 
with this assembly was 18.6 kG. The smoothing on the 
magnet supply proved to be inadequate, and the magnet 
ripple was the most important source of noise. This noise 
was backed off with a signal from a search coil cemented 
to one of the pole faces. 

FIG. 1. Stereographic projection of specimen (0001) poles on the 
yz plane. Open circles-Cd. Shaded circles-Zn. 
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FIG. 2. An experimental curve. 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 
sine of the angle between the magnetic field and the Hall probes 

The Hall signal was measured with a Tinsley Diessel-
horst Thermo-electric-free potentiometer. The null sig
nal from this was amplified with a Tinsley photocell 
amplifier, and finally recorded on a Kipp microvolt 
recorder. Shielding and earthing of the measuring circuit 
proved to be critical, but eventually the technique could 
reproducibly measure potentials within an accuracy of 
±5X10~ 9 V. With care, the accuracy was even better. 
Figure 2 shows an experimental curve obtained under 
good conditions. The scatter about the mean line is 
approximately 2X 10~9 V, which is the magnitude of the 
calculated Johnson noise in the specimen circuit. 

The magnet was rotated through 360° with measure
ments being taken every 30°. In all cases the Hall signal 
varied sinusoidally with magnet azimuth. In some cases 
a regression formula was used to fit the best sine curve 
to the data, but because of the small scatter this was not 

(OOOI) pole 

significantly better than the best curve fitted by direct 
inspection of the results. The Hall voltage was linear 
with both current and field in all these experiments. 

The distribution of orientations of the grains in the 
polycrystalline specimens were determined using a 
Schulz goniometer6 with a Geiger-Muller counter and 
a rate meter. The rate meter curve was used to plot a 
pole figure. 

RESULTS AND DISCUSSION 

The results are described in terms of the angles shown 
in Fig. 3. The specimen plane is defined as the yz plane 
with the current direction as the z axis. The Hall field 
is then measured along the y axis, and the magnetic field 
is in the xy plane. Logan and Marcus1 express their 
results in terms of the polar coordinates of the hexad 
axis (ce,/3), but it is more convenient to express the 
Hall field Ey in terms of the angles e and 5. 

Ey/~j= {i?2 cos2€+Ri sm2e}Bx 

+ {i(R1-R2)sm2esind}By 

+mR1-R2) sin2ecos8}Bz (6) 

If the system is correctly aligned, Bz=0 and Ey is then 

TABLE II. Hall coefficients RH (10~12 Q, cm G-1), single crystals. 

1 
2 
2' 
3 
4 
5 
6 
7 
8 

Best value 

Zn 

Ri 

1.4 
1.7 
1.4 
1.8 
1.6 
1.3 
2.5 
1.9 
1.4 
1.4 

;297°K) 

i?2 

-0 .14 
-0.32 
-0.32 
-0 .33 
-0 .30 
-0 .26 
-0 .23 
-0 .14 

-0 .28 

Zn 

Ri 

2.3 

2.2 

1.8 

1.8 

(77°K) 

i?2 

+0.28 

+0.21 

+0.29 

+0.28 

Cd (297 °K) 

Ri Ri 

1.34 0.32 
1.43 0.29 

1.43 0.39 
1.30 0.46 
1.36 0.34 
1.46 0.42 

1.39 0.39 

FIG. 3. Experimental coordinate system. 

6 B . D. Cullity, Elements of X-Ray Diffraction (Addison-
Wesley Publishing Company, Inc., Reading, Massachusetts, 
1956), p. 290. 
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a sinusoidal function of the magnet azimuth 6. The 
extrema of the sine curve are displaced from the posi
tions 0=7r/2, 0 = 37r/2, which they would occupy for an 
isotropic material by the angle \p, where 

cot^= (R2 cos2e+i^i s i n 2 e ) / {K^ i -^2 ) sin2e sinS}. (7) 

The Hall coefficients Ri and R2 can be most conveniently 
determined from the experimental values of Ey(0) and 
Ey (w/2); or alternatively, from Ey (max) and \f/. The 
results obtained are listed in Table II . 

The errors in the values of R\ and R2 determined in 
this way arise in various ways. These can be divided into 
two groups: 

(a) Errors in determination of the electrical quanti
ties j , Ey, and B. These errors are small and reasonably 

1 
6 / T V 

I 1 1 1 1 1 

- 3 - 2 - 1 0 1 2 3 <3 -2 -1 0 1 2 3 - 3 - 2 - 1 O 1 2 3 

A6,° &£? &?," 

FIG. 4. The effect of angular errors on Ri and R2: zinc. 

constant in these experiments. The absolute errors 
introduced are probably not greater than ± 2 % ; the 
relative scatter is considerably less. 

(b) Errors in determination of the geometrical 
quantities: 

(i) The polar coordinates of the hexad axis relative 
to the specimen geometry. These angles are probably 
not more accurately defined than ± 1 ° by the Laue 
method. 

(ii) The angle between the current direction and the 
Hall probes and other possible skewness in the experi
mentally defined reference system in Fig. 3. These angles 
again may be in error by as much as 1°, although great 
care was taken to construct a rigid and accurately 
locating specimen holder mounting. 

(iii) The angle \p. I t is difficult, even with the precise 

1 6 5/ 

\\JA 

r 6 1 

r • 5 1 -̂  

\~ 4 1 

r/\ 

BJ 
I I_JL_I—I 1 1 • I 
I 1 1 1 1 1 1 

- 3 - 2 - 1 0 1 2 3 - 3 - 2 - 1 0 1 2 3 - 3 - 2 - 1 0 1 2 3 

AS,° A£,° A J ^ ° 

FIG. 5. The effect of angular errors on Ri and R2: cadmium. 

data obtained in these experiments, to locate the posi
tion of the maximum on the sine curve to better than 2°. 

The effect of the angular errors on the measured values 
of Ri and R2 are difficult to estimate. In Figs. 4 and 5 
are shown graphs of the variation of Ri and R2 for both 
metals with e, 5, and \p separately about the experi
mentally determined values. I t can be seen that within 
the experimental definition of these angles the variation 
in the coefficients is large. As a measure, in Figs. 6 and 7 
are shown the bandwidths of results as a function of an 
"error angle" <j>. Since ^ is less well defined than the 
other quantities, it has been assumed that Ae=A5 = <j{); 
Aif/=2(j). The sign of the error has been chosen to 
minimize the bandwidth, and it can be seen that in 
fact the bandwidth becomes zero for values of 0 less 
than the 1° possible estimated on experimental grounds. 
However, the fact that crystals for which Ri or R2 vary 

FIG. 6. Effect of combined angular errors on the range 
of i?2 zinc at room temperature. 
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very rapidly with some of the angles nevertheless give 
values close to those obtained for the other crystals, 
suggests that the angles were actually more accurately 
determined than the estimates above would suggest. 
No cadmium crystals were grown for which the basal 
plane was very far from the plane of the sheet. Conse
quently, the observed Hall signal was nearly all due to 
Rh which varies only slightly with e, 5, and \p. The ob
served results, as listed in Table II , show that all the 
values of Ri lie within ± 5 % of the mean. I t seems 
likely, therefore, that this is the order of the scatter in 
the data due to sources other than angular variations. 
The existence of errors other than angular errors is 
confirmed by the difference between the results 2 and 2' 
for zinc. I t is impossible to reconcile Ri and R2 for these 
two results by any choice of e, 5, and \p, although, in 
fact, these results were obtained from the same speci
men, simply removed from the mount and rotated 
through 180° before remeasurement. On these grounds, 
it is felt that probably the weighted mean value of the 
larger component Ri is within 20% of the true value. 
These weighted mean values are shown in Table II . 
All these experiments were performed at 297°K. A 
limited number of measurements were performed on 
zinc single crystals at 77 °K, and the mean of these 
results is also shown in Table I I . The agreement with 
the results of Logan1 and of Noskov5 shown in Table I 
is very good. I t is interesting to note that the sign of the 
smaller component R2 changes between 297 and 77°K. 

THE EFFECT OF ANNEALING THE 
SINGLE CRYSTALS 

In spite of the care taken to avoid stressing the 
crystals, it was thought that during preparation and 
mounting of the specimens some deformation must have 
taken place. The effect of annealing the entire specimen 
assembly at 100°C was therefore studied. In the main, 
the value of the Hall signal increased with annealing 
time, reaching a constant value after about 24 h. In 
some cases, however, the signal decreased to a steady 
value, and in others there was no significant change. In 
all cases the total change was not greater than 10%. 
There was no obvious correlation between the type of 

O.20 

0.10 

n 

T 1 1 

! I . \ . . I 

behavior and the orientation of the crystal. This effect 
is interesting and needs further study. For the majority 
of the experiments described in this paper the specimens 
were annealed at 100°C for 48 h to permit the Hall 
signal to reach its steady value. 

POLYCRYSTALLINE SAMPLES 

The application of single-crystal results to the in
terpretation of polycrystalline specimens requires three 
assumptions: 

(1) The grain boundaries do not make a significant 
contribution to the Hall effect. This is probably justified, 
since in high-purity metals with large grain size, the 
amount of material whose properties are affected by the 
grain boundaries is small. 

FIG. 7. Effect of combined angular errors on the range 
of R% cadmium at room temperature. 

FIG. 8. (0001) pole figure for rolled zinc. Pole density 
increases from A to D. 

(2) The short circuiting of the specimen current by 
crystals, with their low resistivity direction parallel to 
the current, is insignificant. In zinc, the difference be
tween the two components of the resistivity is approxi
mately 5%. For an ideal specimen consisting of two 
equally sized crystals connected only at their ends, one 
with the hexad axis normal to the current, the other 
with the hexad axis parallel to the current, the Hall 
coefficient calculated, allowing for the difference in the 
current in each crystal, is approximately 4 % greater 
than the value calculated, assuming the current density 
in each crystal is the same. For a real situation the dif
ference will be much less. 

(3) The short circuiting of the Hall field is small. I t 
is much more difficult to evaluate the effect of the short 
circuiting of the Hall signal in adjacent grains, because 
of the multiple connection of the circuit. Loop currents 
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will flow as a result of the differences in Hall potential, 
but it is not possible to calculate the magnitude of the 
consequent alteration in the net Hall voltage. I t seems 
likely that the effect of the short circuiting will be to 
reduce the apparent Hall voltage, and there is no 
a priori reason for supposing that the effect is negligible. 

If these three assumptions are made, then one can 
simply sum the contributions to the total Hall signal of 
all the grains, treating each as a separate single crystal. 
Equation (6) then becomes 

£ y = - i { £ (£2 cos 2 e+#! sin2€>(€)£* 

+ 1 E E ( * i - * 2 ) sin2e sm5n(e)n(5)By} , (8) 
e=0 5=0 

where n(e) and n{b) are normalized weighting functions 

FIG. 9. (0001) pole figure for rolled cadmium. Pole density 
increases from A to E. 

representing the distribution of (0001) poles as a func
tion of e and 5. These functions can be determined from 
the pole figure, or, more properly, from the x-ray data 
used to plot the pole figure. If the pole figure possesses 
a twofold rotation axis of symmetry normal to the plane 
of the sheet, so that 

n(b) = n(bJr'w) 

or a mirror line parallel to the current so that 

n(8) — n(—5), 

the second term in (8) sums to zero since it contains the 
term 

2r 

E n(8) sine). 
5-0 

FIG. 10. (0001) pole figure for cross-rolled zinc. Pole 
increases from A to E. 

Consequently, the extrema of Ey(B) will occur at 6 = ir/2 
and 6=3T/2, exactly as for an isotropic material. This 
is, in fact, found experimentally for all the poly crystal
line specimens examined in this investigation to within 
± 2 ° . The Hall coefficient is then 

TT/2 

RH — E (-^2 cos 2 e+i? i sin2e)^(€) 

or 

RH = R2 E n(e) cos2e+R1 £ n(e) s i n 2 ( e ) . (9) 
e=0 e=0 

Specimens of various textures were produced for each 
metal. Figures 8 and 9 show the (0001) pole figures for 
rolled zinc and cadmium, respectively. Figures 10 and 
11 show pole figures for zinc and cadmium after cross 
rolling. The slight asymmetry in all these pole figures 
is probably due to the rolls not being exactly parallel. 
Figures 12 and 13 show the weighting factors n(e) as 
a function of e for the two cadmium specimens. The 
integrated weighting functions and the calculated values 
of the Hall coefficient for the various specimens are 
listed in Table I I I , together with the observed values. 

The calculated Hall effects for the zinc specimens 
are very close to the experimental results, but the results 
for cadmium are all smaller than the predicted value. 
R± is known with some accuracy for cadmium, and the 
difference in the weighting factors produced by the 
cross rolling is large. Although R2 is much less well 
known, the value R2 would have to be assigned to obtain 
agreement between prediction and experiment is al
together too low. I t is felt, therefore, that the disagree
ment is significant and that the initial assumptions are 
invalid. If the second assumption is incorrect, the dif-
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FIG. 11. (0001) pole figure for cross-rolled cadmium. 
Pole density increases from A to E. 

ference between the predicted and observed results 
should have the opposite sign, but if the third assump
tion is incorrect the error introduced would be of the 
kind observed. Consequently, it seems likely that in 
cadmium the short circuiting of the Hall signal is not 
negligible. 

In Table I I I are also shown the values of Ri and R2 

calculated from specimens of different textures, together 
with the range of values consequent on a 10% error in 
the calculation of the integrated weighting factors. This 
is a larger error than is likely. The qualitative agreement 
with the values measured on single crystals is good, but 
because of the rather large scatter bandwidth conse
quent on the assumed error in the integrated weighting 
factor, the quantitative agreement is only fair. 

T 1 T 1 1 r 

FIG. 12. Weighting factors for cadmium sheet. Circles cross 
rolled. Triangles straight rolled. 

A N D S T R I N G E R 

a 8 T ^ V Q ^ ^ ^a^^^ 

0.8QI 1 1 1 1 1 L_ 

I 1 1 1 1 1 r~ 

0 . 5 9 - • 

0.521 « 1 « « ' «-
I 1 1 1 1 1 r-

^ §-

0 45 90 125 180 

C 
FIG. 13. The variation of RH with y the angle between the 

rolling direction and the z axis. Open circles Cd. Shaded circles Zn. 
The bottom graph is a normalized plot. 

I t seems, therefore, that only approximate values of 
the independent coefficients of the Hall vector can be 
obtained from polycrystalline samples. In part, this 
is due to the relatively small variation in the integrated 
weighting factors produced by considerable changes in 
the pole figure. An accurate result depends on obtaining 
textures which produce very different values for the 
integrated weighting factors. For the titanium problem 
studied by Roesch4 this is not of such great importance, 
since both components of the Hall vector are large and 
of opposite sign. 

THE EFFECT OF ROLLING DIRECTION 

Equation (9) shows that RH depends on e only through 
the functions cos2e, sin2e, and n(e). All of these functions 
are independent of 7, the angle that the rolling direction 
makes with the current density, so that it follows that 
the observed value of the Hall constant in sheet speci
mens should be independent of the angle at which the 
specimen is cut from the sheet. This has been checked 
for both zinc and cadmium. The results are shown in 
Fig. 14. The variation of the Hall coefficient is only 5 % 
compared with an absolute experimental error (shown 
by the vertical bars) of approximately ± 3 % , but as the 
normalized curves show, there does appear to be a 
systematic variation of RH with 7, with a period of x. 
In addition, although the absolute accuracy is of the 
order of =±=3%, the relative accuracy of these observa
tions is much better. 

I t is possible that this variation is due to a non-
vanishing contribution by the By term in Eq. (8). This 
equation may be written 

R(0) = T, fx{e)n{e) co s0+Z /„(«)»( e) sin«»(5) sin<9, 

where 

/ , ( e ) - i ? 2 cos 2 e+i? i s in 2 e , /y(e) = i ( i? 1 - i2 2 ) sin2€ (10) 
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TABLE III. Hall coefficients (10~12 il cm G_1), polycrystalline material. 

A1067 

2 n(e) cos2e 
Predicted RH 
Range 
Experimental Rn 

Calculated ^ 

Zn4N a 

297 °K 

0.54 
0.50 

±0.1 
0.55 

ZnSN 

297°K 77°K 

0.43 
0.68 1.15 

±0.1 ±0.15 
0.65 1.06 

297° 
1.44±0.50 

-0.40±0.28 

Zn SNXRh 

297°K 77°K 

0.55 
0.47 0.96 

±0.1 ±0.1 
0.43 0.84 

77° 
1.85±0.70 
0.20±0.30 

Cd 5N Cd SNXR 

297°K 297°K 

0.60 0.33 
0.77 1.05 

±0.1 ±0.1 
0.61 0.87 

297° 
1.20±0.4 
0.22±0.2 

«4i\r refers to 99.99% and 5N to 99.999% pure material. b XR signifies cross-rolled material. 

and 

BX=B cosd By=B sintf. 

The measured value of RH in the maximum of R(6), i.e., 

* * = { | X f«(*)n(e)J+n: fy(e)n(e) sm8n(8)J}^ 
e e5 

= £/.(«)»(«) 
e 

X { l + E / » ( « ) » ( * ) sin8»(8)]V 

rzM*Memi>. (ID 

if 

E /»(e)»(«) s in5 W (3)«E / , («)»(«) , (12) 
€ 5 € 

Eq. (11) becomes 

RH = H Me)n{e) 

X { l + i [ E /»(«)»(«) sinSn(S)J/[T. / . (« )» (« )? 

+ [ E /,(«)»(«) sin5»(8)]V2 £ / . (e )n(e) . (13) 

But if the contribution of the By term in (8) vanishes, 

RH=RH° = ZMe)n(e). (14) 
e 

The contribution of the By term may then be written 
as RH1, SO that 

RH=RH"+RH\ 

where 

€=7r/2,5=27r 

Rn^L E /J/(e)«(6)sinS»(8)]V2JRK0. (15) 
€.8=0 

The condition (12) is equivalent to the condition that 
RH^RH0, which is justified experimentally. Equation 
(15) may be written 

RH
1 = K(e){j:sm8n(8)}2, 

8 
(16) 

where now K(e) is a function of e only, independent of 8. 
The term E sin5^(5) will have opposite signs for 

0 < 8<T and for TT< 8< 2w. The condition that this term 
is zero is then that the magnitude of the sum on either 
side of the axis 8= 0 is equal. This is plainly true if there 
is a twofold axis of symmetry normal to the sheet, and 
is also true if the line 5 = 0 is a mirror line. For pole 
figures in this investigation there is a mirror line ap
proximately parallel to the rolling direction, so that for 
specimens cut with their long axis parallel to the rolling 
direction (7 = 0) the summation above is zero and conse
quently Rul=0. However, for 7 ^ 0 

£ sm8n(8) + Y< sin8n(8)y*0, 
5=0 5=0 

(17) 

and, consequently, R^T^O. The magnitude of the in
equality (12) increases as 7 approaches T/2, since the 
regions of high n (8) are thus rotated into regions where 
the magnitude of sinS has its maximum value. The 
magnitude of the inequality (12) has a periodic varia
tion with 7 of period 7r, although the absolute value 
varies with 7 with a period 2-K. However, RH1 is related 
to the square of the inequality (12), and thus will show 
a periodic variation with the angle between the rolling 
direction and the current direction with a period of w, 
in agreement with the observed behavior. A detailed 
calculation would require values for the function K(e) 
and the function n(8). While this is possible, the errors 
involved in an experimental determination of the func
tions would be larger than the magnitude of RH1. 

CONCLUSIONS 

The two independent coefficients of the Hall vector 
for zinc and cadmium have been measured for single-
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crystal specimens. These values have been used to pre
dict the Hall coefficient for poly crystalline samples, 
and the possibility of using polycrystalline specimens to 
determine the independent coefficients has been in
vestigated. I t is concluded that good quantitative values 
will only be obtained if it is possible to obtain specimens 
with very different textures. 
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Spin-Lattice Relaxation in Free-Radical Complexes 
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Spin-spin and spin-lattice relaxation times have been determined at 19.3 Mc/sec for samples of 1,1-di-
phenyl-2-picrylhydrazyl, picryl-iV-aminocarbazyl, and their recrystallized samples from various solvents. 
It is found that the spin-lattice relaxation time increases in most of the recrystallized samples and the melting 
points of the samples decrease. It has been possible to explain these results in terms of variable exchange 
interaction due to a possible change in lattice. The three-reservoir model of Bloembergen and Wang has been 
used in order to evaluate the relaxation times for spin to exchange and exchange to lattice. 

INTRODUCTION 

IN solids, spin-lattice relaxation time gives valuable 
information regarding the structure of the lattice 

and spin-orbit coupling. Though in free radicals, the 
spin-orbit coupling is weak and spin-lattice relaxation 
time is usually large, yet it has been found possible to 
determine it by measuring the linewidth for two values 
of the radio-frequency fields. 

We have determined T\ and T2 the spin-lattice and 
spin-spin relaxation times for l,l-diphenyl-2-picryl-
hydrazyl, picryl-TV-aminocarbazyl, and their recrystal
lized samples from various solvents. The melting points 
of the samples have also been determined for all the 
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FIG. 1. Block diagram of electron spin resonance rf setup. 

cases. I t is found that increase in spin-lattice relaxation 
time is accompanied by a decrease in melting point. 
A large change in spin-lattice relaxation time is not 
necessarily accompanied by a large change in linewidth. 
I t has been possible to explain these results in terms of 
possible change in lattice. The three-reservoir model of 
Bloembergen and Wang1 has been used in order to 
evaluate the relaxation times from spin to exchange 
and exchange to lattice. 

EXPERIMENTAL TECHNIQUE 

An rf electron spin-resonance spectrometer at 19.3 
Mc/sec using a Clapp-type oscillator and detector, 
shown in Fig. 1, has been used here for this work. The 
sensitivity is sufficiently high when it is oscillating 
weakly, and the method is found to be most convenient 
for this measurement. The spin-spin relaxation time T2 

and spin-lattice relaxation time T\ have been deter
mined by measuring the half-linewidth between half-
maximum points, and for two values of the rf magnetic 
fields E\ and H2j respectively. The expressions for the 
half-linewidth derived from the Bloch2 equations are 
as follows: 

5i = [ 1 + (yHO^TzJV/yT,, (1) 

52 = D + (yHtfT&jv/y^, (2) 

where y^gfi/h. The expressions for T% and T2 can be 
written by squaring and rearranging the Eqs. (1) 

1 N. Bloembergen and S. Wang, Phys. Rev. 93, 72 (1954). 
2 F . Block, Phys. Rev. 70, 460 (1946). 


